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Abstract 

In this paper, we would like to present an approach for impartial and quantitative 
benchmarking of optimization algorithms with respect to characteristics induced by 
the forward calculation. Starting from a brief introduction into the employed 
approach, a strategy for optimization algorithm benchmarking and rating is 
introduced. Due to the professional background of the authors this rating strategy is 
illustrated on a selection of different search methods in regard to expected 
characteristics of geotechnical parameter back calculation problems. 
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1 MOTIVATION 

For numerical simulations, it is essential to use a model parameter set which generates 
a realistic system response. In practice, parameter back calculation based on the direct 
approach is often used for this purpose in which mathematical optimisation 
algorithms are a critical component. Many different optimization algorithms are 
known and are available within the literature (for an overview, see e.g. [11] or [7]). 
These algorithms use a variety of approaches to perform the search for optimal 
parameter combinations. However, the performance and convergence of the different 
optimization algorithms itself varies strongly, and also depends strongly on the 
optimization problem to solve. Exorbitant computational costs or, in the worst case, 
an improper or random parameter set will be returned if an unsuitable optimization 
algorithm is selected. Therefore, a suitable optimization algorithm has to be carefully 
selected for each problem. 
For optimization algorithms, the performance by means of “finding the optimum 
reliable” and “low computational cost” cannot be assessed in a closed mathematical 
form in most of the cases. However, we may use a statistical analysis of the solution 
obtained from optimization runs to make conclusions on some properties of the 
optimization algorithm and the search-performance. For this approach, the success 
rates of finding the optimum is treated as a stochastic value and statistical measures 
are applicable. Hereafter the approach used and some results are presented. 
 

2 EMPIRICAL BENCHMARKING APPROACH 

The parameter identification approach, using the direct back analysis method, consists 
of an iterative procedure controlled by an optimization algorithm. The model para-
meters are iteratively changed in such a way to achieve better agreement between the 
model results and the measured values, e.g. the field measurements. This agreement 
(or disagreement) is measured by the objective function f(x). The aim of the 
optimization algorithm is therefore to iteratively minimize the objective function 
value. 
The computational cost caused by this iterative process is mainly influenced by the 
number of forward calculations (usually numerical simulations) requested by the 
optimization algorithm. The processor usage of the optimization algorithm on the 
other hand is usually neglectable (<<1 sec). A typical single forward calculation used 
in Geotechnics (e.g. Finite Element model of an excavation pit) requires often 5 min 
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calculation time or more. Minimizing the computational cost of an optimization 
sequence is therefore equivalent with minimizing the number of forward calculations. 
For the statistical approach applied here no “real life” forward calculation has been 
used to avoid high calculation time. As shown in Fig. 1 the normal calculation 
scheme for an objective function value has been altered using a well defined and well 
known test function. The introduction of the test function has no influence on the 
iterative process controlled by the optimization algorithm. From view of the 
optimization algorithm an objective function value is still calculated based on a 
parameter vector.  
 

 

Figure 1: Comparison of calculation scheme 
for usage of forward calculations 
and test functions 

 

 

Figure 2: Topology of 2D Ackley test 
function 

 

 
As stated by [2] and also by the experience of the authors (e.g. [6, 8, 14]), many 
objective functions from the field of (geo-)technics have a globally convex shape, in 
which often secondary (locally optimal) solutions are present. Furthermore many 
objective functions show a certain ‘roughness’ or ‘noise’ at a smaller scale. 
Additionally for some parameter vectors a forward calculation can fail reproducible 
(e.g. no convergence in the Finite Element Method) and no objective function value 
can be calculated accordingly. 
In view of these facts two test functions have been chosen for the benchmarking 
presented: Firstly the Moved axis parallel hyper-ellipsoid function which has no 
secondary optima and one global optimum [10]. Secondly the Ackley test function in 
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its generalized form, which shows several secondary optima of varying objective 
function values and a single global optimum (see Fig. 2 and [1] for details). 
Both test functions exhibit no roughness or failed parameter vectors. In order to 
incorporate both characteristics the original test function f(x) is superposed with a 
noise field r(x) according to Eq. (1) and (2). In Eq. (2) srnd(■) is a pseudo-random 
number generator returning equal-distributed numbers ranging from 0.0 to 1.0, while 
for one and the same argument (■) always the same number is retuned. The control 
variable τ is the noise scaling factor. According to Eq. (3) a parameter vector x is 
considered “failed” if the pseudo-random number for x is smaller or equal to a 
predefined failure probability pf. 

                 (1) 

        
 

 
 

 

 
         

 
     (2) 

          
 (3) 

The majority of optimization algorithms will not find the exact location of the test 
function global optimum (x*), but will rather move asymptotically towards x* due 
to underlying paradigms. The optimization sequence is considered to be 
successful, if the parameter set xmin with the smallest objective function value is 
located within Ψ as defined by Eq. (4). 

                    
 

     (4) 

The search range Ω and dΨ has been chosen as follows (please note that the 
relative size of Ψ for both test functions is equal compared to Ω): 

- Ackley Test Function: -1.0 ≤ xi ≤ +2.0 with dΨ = 0.1 
- Moved axis parallel hyper-ellipsoid function: -10.0 ≤ xi ≤ +20.0 with dΨ = 1.0 

To assess the probability of which an optimization algorithm is able to converge 
within Ψ on a test function for given values of pf. and τ, a large number of 
optimization sequences is repeatedly run. For each sequence the start parameter sets 
are chosen randomly within Ω and the number of forward calculation is limited to 
500. The quotient of successful sequences over the total number of sequences is 
considered as success rate p. The number of optimization sequences is increased until 
the success rate is stabilizing, what usually corresponds to some 10’000 runs. 
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3 RESULTS 

The empirical benchmarking approach described above has been applied to 5 selected 
optimization algorithms. Namely, Monte-Carlo method (MC), a gradient descent 
method (GD) (e.g. [12, 11]), an evolutionary-genetic algorithm (EG) [e.g. 11], the 
Simplex-Nelder-Mead optimizer (SNM) [9] and the particle swarm optimizer (PSO) 
[5, 4]. For each algorithm both test functions have been used with n = {2, 3, 4, 6, 8 
and 10} unknown parameters. 
The diagrams of Figure 3 show on the vertical axis the success rate p. over the noise 
control variable τ and, respectively, the failure rate pf. The main conclusions are: 
- The MC method performs well for n = 2. For higher n it clearly suffers from the 

“curse of dimensionality” [3]. 
- The GD performs works very nice for smooth objective function topologies with 

no secondary optima. It performs very badly if secondary optima are present, as it 
is the case for the Ackley test function. The GD is also not robust to noise and 
failing forward calculations. 

- The SNM optimizer is much more robust than the GD. Nevertheless, due to its 
local character the success rate for the Ackley test function is ~50% even for the 
ideal case of τ = 0 and pf = 0. 

- The EG algorithm class is very popular among many researchers due to its high 
robustness. This robustness is also visible in Figure 3. The major drawback of this 
method is its need for a large number of forward calculations as also stated by 
[13]. 

- For both test function the PSO (10 particles) used shows the best performance 
values. It outperforms clearly all other tested algorithms including the EG method. 
This finding is in agreement with the experience of other researchers, e.g. [13]. 

The results of Figure 3 show clearly how different the optimization algorithms behave 
for the two test functions. This illustrates how the nonlinearity of the objective 
function has a strong influence to the performance of the optimization algorithm.  
 

4 CONCLUSION AND OUTLOOK 

In the present paper an approach for impartial and quantitative benchmarking of 
optimization algorithms has been briefly presented and applied to 5 selected 
optimization algorithms. Of all the optimization algorithms tested, the PSO shows the 
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best performance. However, if an objective function with a severely different 
nonlinearity is present, or if the number of unknown parameters n increases strongly 
the PSO may be outperformed by other algorithms. 
The next step will be to define a rating function based on the performance profiles to 
provide an objective rating method for optimization algorithms. 
 

 

Figure 3: Results of the 5 tested optimization algorithms 
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